个人信息:
丁磊,山东临沂人,1980年生。
学术身份:
教授,博导,齐鲁青年学者。现为IEEE高级会员,IEEE PES济南分会秘书长,山东电机工程学会副理事长,全国短路电流计算标委会委员,中国电机工程学会、中国电源学会、中国自动化学会专委会委员,CIGRE B5.57工作组、C4/B5.61工作组、IEC SC 8A工作组专家。SCI期刊Int. J. Electr. Power Energy Syst. 编委。主持国家重点研发计划项目课题1项、国家自然科学基金课题2项、国家电网总部科技项目多项,并参与多项国家973和科技部攻关计划课题,参与制定国家标准1项。在IEEE Trans. Power Syst.等期刊发表SCI/EI论文50余篇,申请和授权发明专利30余项。2018年获中国电力优秀青年科技人才奖。
工作经历:
2022.1至今 yl23411永利集团官网登录院长 党委副书记
2018.4-2022.1yl23411永利集团官网登录副院长
2015.9至今yl23411永利集团官网登录教授
2010.4-2015.8 yl23411永利集团官网登录副教授
2009.11-2011.7 英国曼彻斯特大学电气与电子工程学院 Research Associate
2008.1-2009.11 清华大学电机工程与应用电子技术系博士后/助理研究员
研究方向:
低惯量电力系统运行控制,新能源发电并网控制,电力系统主动解列
学术著作(部分):
部分已发表的期刊论文如下:
[1]Ding L, Guo Y, Wall P, et al. Identifying the Timing of Controlled Islanding Using a Controlling UEP Based Method[J]. IEEE Transactions on Power Systems, 2018,33(6): 5913-5922
[2]Ding L, Ma Z, Wall P, et al. Graph Spectra Based Controlled Islanding for Low Inertia Power Systems[J]. IEEE Transactions on Power Delivery, 2017,32(1): 302-309
[3]Ding L, Guo Y, Wall P. Performance and Suitability Assessment of Controlled Islanding Methods for Online WAMPAC Application[J]. International Journal of Electrical Power and Energy Systems,2017,84: 252-260
[4]Ding L, Wall P, Terzija V. Constrained Spectral Clustering Based Controlled Islanding[J]. International Journal of Electrical Power and Energy Systems, 2014,63: 687-694
[5]Ding L, Wall P, Terzija V, et al. Two-Step Spectral Clustering Controlled Islanding Algorithm[J].IEEE Transactions on Power Systems, 2013,28(1): 75-84.
[6]Faraji R, Ding L, Rahimi T, et al. Application of Soft-Switching Cell with Inherent Redundancy Properties for Enhancing the Reliability of Boost-Based DC-DC Converters[J]. IEEE Transactions on Power Electronics, 2021,36(11): 12342-12354.
[7]Rahimi T, Ding L, Abadifard A, et al. Unbalanced currents effect on the thermal characteristic and reliability of parallel connected power switches[J]. Case Studies in Thermal Engineering, 2021,26.
[8]Rahimi T, Ding L, Faraji R, et al. Performance Improvement of a Three-Phase Interleaved DC-DC Converter without Requiring Antisaturation Control for Postfault Conditions[J]. IEEE Transactions on Power Electronics,2021,36(7): 7378-7383.
[9]Wang X, Ding L, Ma Z, et al. Perturbation-Based Sensitivity Analysis of Slow Coherency with Variable Power System Inertia[J]. IEEE Transactions on Power Systems,2021,36(2):1121-1129.
[10]Kheshti M, Ding L, Askarian-Abyaneh H, et al. Improving frequency regulation of wind-integrated multi-area systems using LFA-fuzzy PID control[J]. International Transactions on Electrical Energy Systems,2021,31(3).
[11]Faraji R, Ding L, Rahimi T, et al. Efficient Multi-Port Bidirectional Converter with Soft-Switching Capability for Electric Vehicle Applications[J]. IEEE Access,2021,9: 107079-107094.
[12]Rahimi T, Ding L, Kheshti M, et al. Inertia Response Coordination Strategy of Wind Generators and Hybrid Energy Storage and Operation Cost-Based Multi-Objective Optimizing of Frequency Control Parameters[J]. IEEE Access,2021,9: 74684-74702.
[13]Faraji R, Ding L, Rahimi T, et al. Soft-Switched Three-Port DC-DC Converter with Simple Auxiliary Circuit[J]. IEEE Access,2021,9: 66738-66750.
[14]Kheshti M, Ding L, Bao W, et al. Toward Intelligent Inertial Frequency Participation of Wind Farms for the Grid Frequency Control[J].IEEE Transactions on Industrial Informatics,2020,16(11): 6772-6786.
[15]Bao W, Ding L, Liu Z, et al. Analytically derived fixed termination time for stepwise inertial control of wind turbines—Part I: Analytical derivation[J]. International Journal of Electrical Power and Energy Systems,2020,121.
[16]Li X, Ding L, Zhu G, et al. Transient Instability Detection Method Based on Multi-source Trajectory Information[J]. International Journal of Electrical Power and Energy Systems, 2019,113: 897-905
[17]Kheshti M, Ding L, Nayeripour M,et al. Active Power Support of Wind Turbines for Grid Frequency Events Using a Reliable Power Reference Scheme[J]. Renewable Energy, 2019,139: 1241-1254
[18]Liu P, Zhu G, Ding L, et al. High-voltage ride-through strategy for wind turbine with fully-rated converter based on current operating range[J]. International Journal of Electrical Power & Energy Systems, 2022, 141: 108101.
[19]Zhang G, Zhang F, Ding L, et al. Wind Farm Level Coordination for Optimal Inertial Control With a Second-Order Cone Predictive Model[J]. IEEE Transactions on Sustainable Energy,in press.
[20]Bao W, Wu Q, Ding L,et al. A Hierarchical Inertial Control Scheme for Multiple Wind Farms with BESSs Based on ADMM[J]. IEEE Transactions on Sustainable Energy,2021,12(2):751-761.
[21]Bao W, Wu Q, Ding L, et al. Synthetic Inertial Control of Wind Farm with BESS Based on Model Predictive Control[J]. IET Renewable Power Generation,2020,14(13): 2447-2455
[22]Guo Y, Bao W, Ding L, et al. Analytically Derived Fixed Termination Time for Stepwise Inertial Control of Wind Turbines—Part II: Application Strategy[J]. International Journal of Electrical Power & Energy Systems,2020,121
[23]Zhang F, Fu A, Ding L, et al. MPC Based Control Strategy for Battery Energy Storage Station in a Grid with High Photovoltaic Power Penetration[J]. International Journal of Electrical Power and Energy Systems, 2020,115.
[24]Zhu Z,Hou M,Ding L,et al.Optimal Photovoltaic Array Dynamic Reconfiguration Strategy Based on Direct Power Evaluation[J]. IEEE Access,2020,8: 210267-210276
[25]Zhang F, Fu A, Ding L,et al. Optimal Sizing of ESS for Reducing AGC Payment in a Power System with High PV Penetration[J]. International Journal of Electrical Power and Energy Systems, 2019,110: 809-818
[26]Phadke A.G, Wall P, Ding L, et al. Improving the Performance of Power System Protection Using Wide Area Monitoring Systems[J]. Journal of Modern Power Systems and Clean Energy, 2016,4(3): 319-331
[27]Quirós-Tortós J, Wall P, Ding L, et al. Determination of Sectionalising Strategies for Parallel Power System Restoration: A Spectral Clustering-Based Methodology[J]. Electric Power Systems Research, 2014,116: 381-390
部分已授权专利如下:
[1] 双馈风机虚拟惯量调频的动态转速保护方法及系统,ZL201911135568.3,2020.04.02
[2] 基于超速风机释放功率提升的风电调频控制方法及系统,ZL201911137050.3,2020.04.23
[3] 弃风参与电网调频的电转气-储气-燃气轮机容量优化配置方法及系统,ZL201911088121.5,2020.02.02
[4] 单dq控制结构双馈风机正、负序转子电流控制方法及系统,ZL202010790352.7,2020.12.28
[5] 直驱风机不对称故障直流母线二倍频电压抑制方法及系统,ZL202010467590.4,2020.12.21
[6] 风电机组协同调频最优退出时间的确定方法,ZL201610976478.7,2019.01.04
[7] 一种双馈风力机组惯性调频主动转速保护控制系统与方法,ZL201510509286.0,2017.10.27
[8] 模拟惯性与超速相结合的双馈风机有功频率控制器及方法,ZL201510334000.X,2017.03.29
[9] 基于归一化谱聚类和约束谱聚类的两阶段主动解列方法,ZL201110173468.7,2014.01.01
[10] 双馈风机故障穿越的优化虚拟阻抗控制方法及系统,ZL202010435460.2,2021.10.22
[11] 双馈风机故障穿越的优化灭磁控制方法及系统,ZL202010435455.1,2021.11.02
[12] 风储交流微电网自动功率平衡控制方法及系统,ZL201910637213.8,2020.09.25
[13] 无信号传输线路中实现非通信高速距离中继的方法及装置,ZL201910373023.X,2021.12.17
[14] 基于WAMS实测轨迹的电力系统暂态稳定综合判别方法及系统,ZL201810846533.X,2020.07.31
[15] 风储协调的直驱风电机组控制方法及系统,ZL202210221146.3,2022.06.14
科研项目:
[1]电网故障下风电机组电压/频率暂态主动支撑技术,国家重点研发计划课题,2018-2021
[2]计及暂态稳定约束和群特性的主动解列策略研究,国家自然科学基金面上项目,2015-2018
[3]基于谱聚类方法的电力系统主动解列研究,国家自然科学基金青年项目,2012-2014
[4]含高比例可再生能源的电网频率协同控制技术研究,国家电网总部科技项目,2019-2020
[5] 高比例新能源接入电力系统分散集群控制,国网总部科技项目,2019-2021
[6]智能电网自愈控制关键技术研究,首批山东大学青年学者未来计划,2015-2020
*更多科研项目见团队概况—科研项目
联系方式:dinglei@sdu.edu.cn